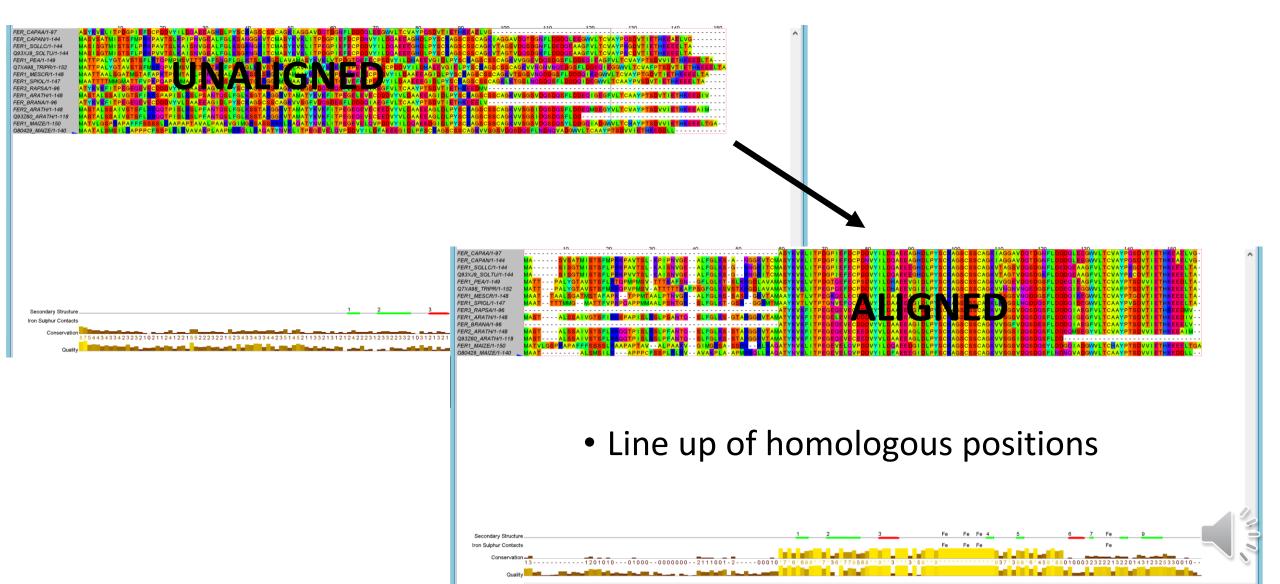

MULTIPLE SEQUENCE ALIGNMENTS

Line up of homologous positions



Why do we need so many sequences?

- Comparative studies, more information Even if we are only interested in one particular sequence
- What other species has a similar sequence?
 - When did this gene appear?
 - Has it been lost in some species or taxonomic group?
 - When did potential gene duplications happen?

Why do we need to align our sequences?

How to align multiple sequences?

Multiple Alignment Algorithms

- ClustalW
- Muscle
- Mafft
- T-coffee
- And more
- http://www.ebi.ac.uk/Tools/msa/ or Jalview or other

>SEQ_A

THIESRPSRL

>SEQ B

TRIESRPSRL

>SEQ_C

HIESRRSR

>SEQ D

TVIESKPSRL

>SEQ E

SQHVESRQSR

Distance =
$$1 - \frac{pairwise\ sequence\ identity\ \%}{100}$$

Add the pairwise sequence identities to complete the table.

SEQ_B 90

SEQ_C

SEQ_D

SEQ_E

>SEQ_A

THIESRPSRL

>SEQ B

TRIESRPSRL

>SEQ_C

HIESRRSR

>SEQ_D

TVIESKPSRL

>SEQ E

SQHVESRQSR

Distance =
$$1 - \frac{pairwise\ sequence\ identity\ \%}{100}$$

Add the pairwise sequence identities to complete the table.

	SEQ_A	SEQ_B	SEQ_C	SEQ_D	SEQ_E
SEQ_B	90				
SEQ_C	87.5	75			
SEQ_D	80	80	62.5		
SEQ_E	66.67	55.56	75	44.44	

DISTANCE

SEQ_B SEQ_C SEQ_D

SEQ_E

>SEQ_A

THIESRPSRL

>SEQ_B

TRIESRPSRL

>SEQ_C

HIESRRSR

>SEQ_D

TVIESKPSRL

>SEQ_E

SQHVESRQSR

Distance =
$$1 - \frac{pairwise\ sequence\ identity\ \%}{100}$$

Add the pairwise sequence identities to complete the table.

	SEQ_A	SEQ_B	SEQ_C	SEQ_D	SEQ_E
SEQ_B	90				
SEQ_C	87.5	75			
SEQ_D	80	80	62.5		
SEQ_E	66.67	55.56	75	44.44	

DISTANCE

	SEQ_A	SEQ_B	SEQ_C	SEQ_D	SEQ_E
SEQ_B	0.1				
SEQ_C	0.125	0.25			
SEQ_D	0.2	0.2	0.375		
SEQ_E	0.3333	0.4444	0.25	0.5556	

>SEQ_A

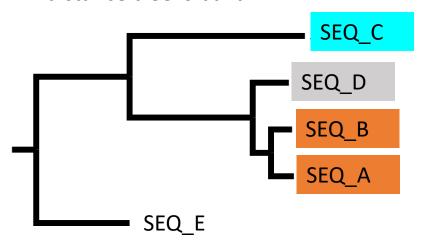
THIESRPSRL

>SEQ B

TRIESRPSRL

>SEQ C

HIESRRSR


>SEQ D

TVIESKPSRL

>SEQ E

SQHVESRQSR

Based on the distance matrix, a distance tree is built.

Add the pairwise sequence identities (%) to complete the table. SEQ_B SEQ_C SEQ_D SEQ A SEQ_E SEQ B 90 SEQ_C 87.5 75 SEQ_D 80 80 62.5 SEQ_E 66.67 75 55.56 44.44

DISTANC	E MATRIX				
		Distance = $1 - \frac{pairwise\ sequence\ identity\ \%}{100}$			
	SEQ_A	SEQ_B	SEQ_C	SEQ_D	SEQ_E
SEQ_B	0.1				
SEQ_C	0.125	0.25			
SEQ_D	0.2	0.2	0.375		
SEQ_E	0.3333	0.4444	0.25	0.5556	

>SEQ_A

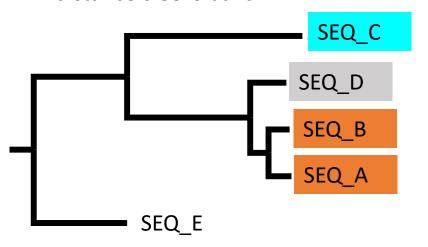
THIESRPSRL

>SEQ B

TRIESRPSRL

>SEQ C

HIESRRSR


>SEQ_D

TVIESKPSRL

>SEQ_E

SQHVESRQSR

Based on the distance matrix, a distance tree is built.

Add the pairwise sequence identities (%) to complete the table. SEQ B SEQ_C SEQ_D SEQ E SEQ A 90 SEQ B SEQ C 87.5 75 SEQ_D 80 80 62.5 SEQ_E 66.67 55.56 75 44.44

DISTANC	E MATRIX				
		Distance	$=1-\frac{par}{}$	rwise sequ 1	ence identity % 00
	SEQ_A	SEQ_B	SEQ_C	SEQ_D	SEQ_E
SEQ_B	0.1				
SEQ_C	0.125	0.25			
SEQ_D	0.2	0.2	0.375		
SEQ_E	0.3333	0.4444	0.25	0.5556	

(We'll get back to tree building. For now, this is a distance tree from Jalview.

The tree is rooted at mid-point.)

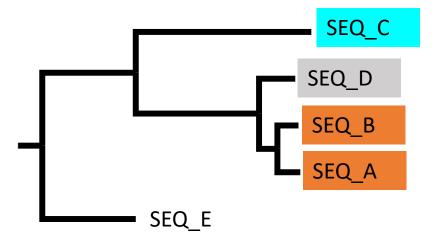
>SEQ_A

THIESRPSRL

>SEQ_B

TRIESRPSRL

>SEQ C


HIESRRSR

>SEQ_D

TVIESKPSRL

>SEQ_E

SQHVESRQSR

 Start the progressive alignment with SEQ_A and SEQ_B:

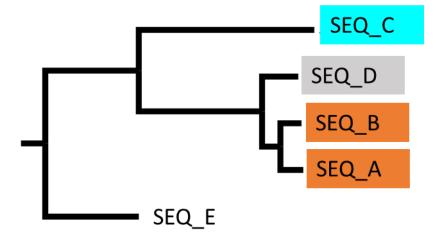
```
SEQ_A THIESRPSRL
SEQ_B TRIESRPSRL
```


>SEQ_A THIESRPSRL

>SEQ B

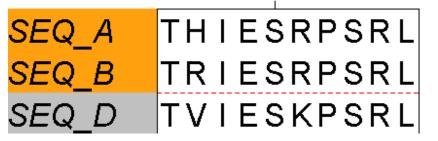
TRIESRPSRL

>SEQ C


HIESRRSR

>SEQ D

TVIESKPSRL


>SEQ E

SQHVESRQSR

 Start the progressive alignment with SEQ_A and SEQ_B:

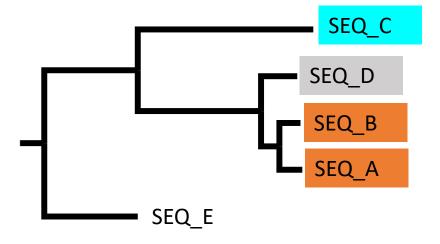
2. Add sequence D:

>SEQ_A THIESRPSRL

>SEQ_B

TRIESRPSRL

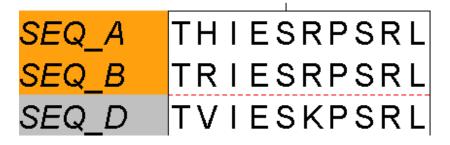
>SEQ_C


HIESRRSR

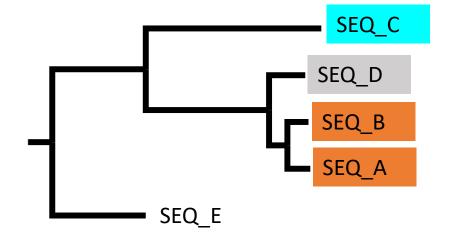
>SEQ D

TVIESKPSRL

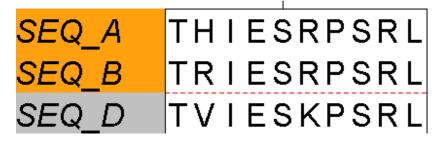
>SEQ E

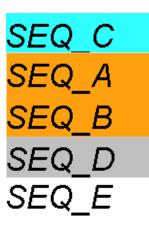

SQHVESRQSR

 Start the progressive alignment with SEQ_A and SEQ_B:


2. Add sequence D:

3. And so on...


>SEQ_A
THIESRPSRL
>SEQ_B
TRIESRPSRL
>SEQ_C
HIESRRSR
>SEQ_D
TVIESKPSRL
>SEQ_E
SQHVESRQSR


 Start the progressive alignment with SEQ_A and SEQ_B:

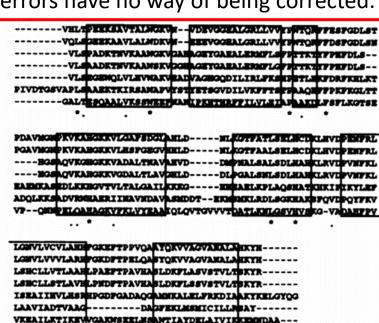
2. Add sequence D:

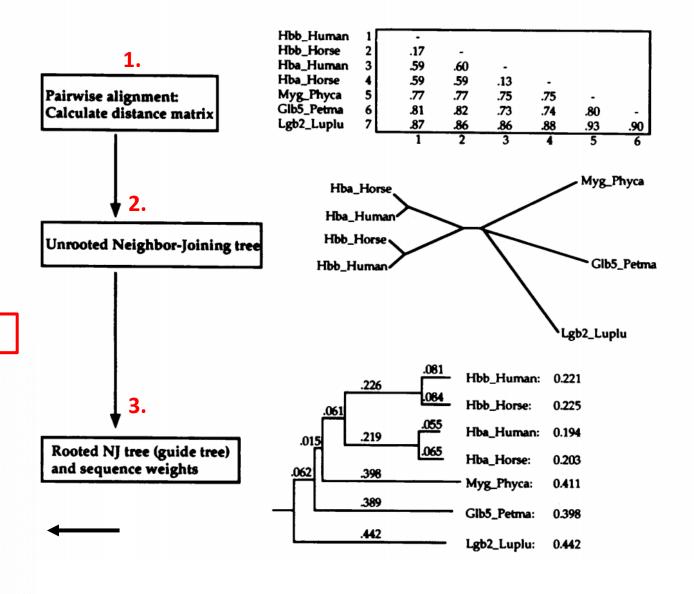
A PROGRESSIVE MULTIPLE SEQUENCE ALIGNMENT!

- - HIESRRSR -- TVIESKPSRL - THIESRPSRL - TRIESRPSRL SQHVESRQSR - 3. And so on...

Clustal W

1. Fast approximate alignments or full dynamic programming

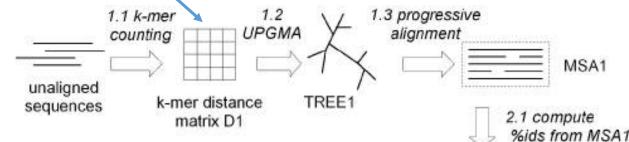

Distance =
$$1 - \frac{pairwise\ sequence\ identity\ \%}{100}$$


- 2. Unrooted NJ tree is rooted mid-point => guide tree
- **3.** Sequence weights from branch lengths. Highly similar sequence have low weights.
- 4. Aligning alignments...

Early alignment errors have no way of being corrected.

4.

Progressive alignment: Align following the guide tree

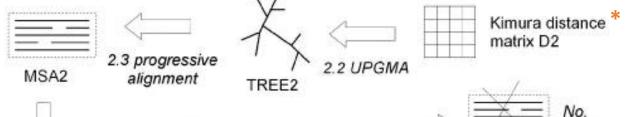


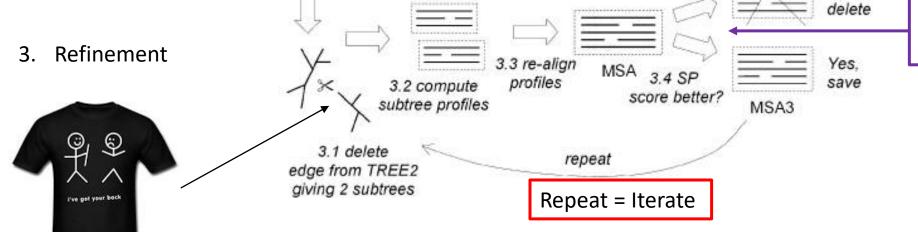
Thompson et al., Nucleic Acids Res. 1994; 22(22): 4673-4580.

Muscle

How many k-mers match for each pair?

Draft progressive


Iterate


MSA1

For every iteration, each edge is cut once, starting from the leaves and traversing up to the root.

Iterations continue until it reaches convergence or a user-specified number of iterations.

Improved progressive

Score = average sum of all pairwise scores

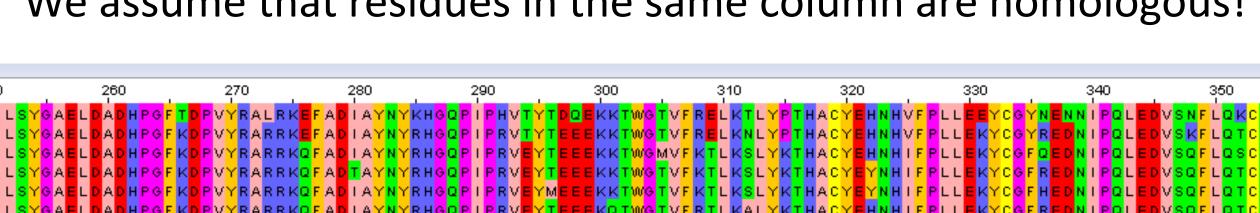
Amazon?

Adapted from Edgar RC. Nucleic Acids Res. 2004; 32(5): 1792–1797.

*Kimura's protein distance matrix

All gapped sites are ignored

$$S = \frac{\text{\# exact matches}}{\text{Total \# of positions scored}}$$


$$D = 1 - S$$
 (uncorrected)

$$d = -\ln(1 - D - 0.2 D^2)$$
 (corrected)

Corrected here means corrected by the relationship between the number of observed amino acid substitutions and the actual amino acid substitutions.

We assume that residues in the same column are homologous!

